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All regular submodels of the system of equations of gas dynamics with an equation of state of general form are described. The 
submodels are classified according to types determined by the rank and defect. Classification tables with comments are presented, 
and some characteristic examples are given. © 1997 Elsevier Science Ltd. All fights reserved. 

The aim of the "PODMODELI" ("submodels") program [1] is to exhaust all possibilities arising from the symmetry 
of differential equations in order to construct submodels (systems of equations of lower dimension) describing 
classes of exact solutions of the original equations. In the present paper, within the framework of this program, 
we describe all (apart from similarity) regular submodels of the system of equations of gas dynamics with an equation 
of state of general foim. Regular submodels [2] can be distinguished by the property that their independent variables 
are functions of the original independent variables only. 

1. G E N E R A L  NOTIONS 

Consider a system E of differential equations with n independent variables x - (x 1 . . . .  , x n) and m 
required functions u = (u 1 . . . .  , u m) of the variables x. Suppose that E admits of a local Lie group H 
of transformations of the space R ~+m (x, u) with universal invariant I = ( I 1 , . . . ,  1~). 

Definition 1. The system of equations E ~  obtained by restricting E to an invariant submanifold M 
of H of dimension n + 5 in R n+m (x, u) and dimension o in the space of invariants R~(/), where o I> 0 
and 0 ~< 5 < m, is called an H-submodel of type of (o, 5) of E. We say that a is the rank and 5 is the 
defect of the H-model. The solutions of the system ElM are called partially invariant solutions of rank o 
and defect 5 or, briefly, H(t~, 5)-solutions. 

If such an M exists, then the components of I can always be chosen in such a way that the following 
relationships with u = (u ,  u ), I = (I ,  I ' ) ,  where u = ( u ~ , . . . ,  um-~), I '  = ( I1 , . . . , / ' ~~ ) ,  are satisfied 
(gr stands for "general rank") 

01" / 0u' = 0, grll01' / au'll-- m - 5, grllOl'" / O(x, u")ll= o (1.1) 

o = l - r a + 5  (1.2) 

Then, if we put 

u = l'(x,u), y= l"(x ,u")  (1.3) 

the equations of M can be written as 

M: v = V(y) (1.4) 

Equalities (1.3) define a representation of the H(a,  5)-solutions in terms of the invariants of H. The 
equations of the submodel H(o, 5) can be obtained by substituting this representation into the equations 
E. As a result, system E splits into two subsystems: the invariant subsystem E/H for the unknown functions 
V(y) and, in addition, a subsystem rI for the "superfluous" functions (SF) u"(x), which is an 
overdetermined system, in general. If 17 is inconsistent, the set of H(o, 5)-solutions is empty. Therefore 
the problem of finding H(o, 5)-solutions rests in the first place on the study of the consistency of the 
equations of rl (reducing 17 to involution). 
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Definition 2. The number 

ix = grll ~I'" / 3u" l l ;  

is called the measure of  irregularity of an H(o,  8)-submodel. If ~t = 0, the H(o,  8)-submodel is called 
regular, and if ~t > 0, it is called irregular. 

Significant differences between regular and irregular submodels are described in [2]. In particular, 
for regular solutions the invariant independent variables y in (1.4) in the subsystem E/H depend only 
on the original independent variables, which makes it much simpler to reduce the subsystem II to 
involution. 

In applications one usually uses not the group H itself, but its Lie algebra of  operators with basis 

x~ =~(x,u)~ , +rl~(x,u)3 u, ( a = l  . . . . .  r) (1.5) 

Then l is determined by the general rank of the matrix formed by the coordinates of the operators in 
(1.5) 

r.=gr, g~(x,u), n~(x,u), 

namely, I = n + m - r.. Substitution into (1.2) yields the formula 

o = 8 + n - r ,  (1.6) 

which determines the rank of o if the defect ~5 is given. 
As is well known [3], possible values of 8 satisfy the inequalities 

max{r .  - n, 01 ~< 8 ~< min{ro - 1, m - 1} 

From (1.7) and (1.6) it follows that the number of different types (o, 5) is equal to nm. 

(1.7) 

Definition 3. The H(o, 0)-solutions are called invariant H-solutions of rank o (o < n is always satisfied). 
For invariant H-solutions in (1.3) we have y = l"(x), i.e. all invariant H-solutions are regular. For 

such solutions the submodel ElM consists of one invariant subsystem E/H, the subsystem H is empty, 
and there is no problem of reducing to involution. 

If 8 > 0, the reduction of II to involution can be a branching process, giving various classes of H(o,  
8)-solutions. Some of these classes may turn out to be Hl(ol ,  81)-solutions for a subgroup H 1 C H. As 
is well known [3], it is always true that ol >I o, 81/> 8 in this case. The introduction of the next notion 
below rests on the fact that the classes of H(o,  8)-solutions of the given rank having smaller defect or 
of smaller rank having the given defect are easier to describe and to study. 

Definition 4. If a class of H(o,  8)-solutions is 'a class of HI(O1, 81)-solutions with subgroup 1-11 C H 
and with 

G 1 - - o ,  8 1 < 8  (1 .8 )  

then it is said that reduction of H(G, 8)-solutions towards a smaller defect occurs. Conversely, if a class 
of H(G, 8)-solutions is a class of//2(o2, ~)-solutions with subgroup H2 D H, where 

G 2 < O ,  52 = 8 (1.9) 

then it is said that inverse reduction of H(G, ~i)-solutions to lower rank occurs. 
Reduction to an invariant solution is particularly often encountered. Some sufficient conditions for 

such reduction, making it possible to predict it from the structural properties of the subsystem •-•, are 
presented in [3]; 

2. T H E  E Q U A T I O N S  OF GAS D Y N A M I C S  

We consider the following system E in a nine-dimensional base space R9(t, x, u, p, S) with independent 
variables t (time), x = (x,y, z) (Cartesian coordinates in R3), and unknown variables u = (u, v, w) (velocity 
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vector), p (density), and S (entropy) 

pDu+Vp=O, D p + p d i v u = 0 ,  DS=O, p=F(p,S) (2.1) 

Here D = ~t + u-  V and V = (~x, ~y, ~z). The pressurep is determined by the equation of state (the last 
equation in (2.1)). F!p, S) is assumed to be a given smooth function of general form that satisfies the 
inequalities F~ = c > 0, where c is the velocity of sound and F s > O. 

We know [2[] that (2.1) admits of an 11-parameter local Lie group Gn of transformations of R 9. The 
Lie algebra LH of this group has the following basis of operators of the form (1.5) 

X,=~. X2=,gy, X3=,9~ 
X4 =t~. +~.. Xs=t,3:,+/~o. xe = t ~  +~,~ 

X7 = y~ - z~y +~. ,  - w~. 
X8 = z~x - x~ + w~, - u~. 

X9 = X~y - y~x + u~ - ~ .  

X,o=~ ,, X,,=t~, + x ~  +y~,+Za~ 

(2.2) 

The normalized optimal system of subalgebras e L  n is given in [ 1]. It consists of 220 representations, 
each of which is a l~tential product of H(o, 5)-submodels. 

In what follows these representations will be denoted by L,,i, where r is the dimension of the subalgebra 
and i is the consecutive number of a subalgebra of given dimension according to the table for OLll. 

3.  T Y P E S  O F  S U B M O D E L S  

In (2.1) n = 1 and m = 5. Therefore, 20 types of H(o, 5)-submodels are a priori possible for (2.1). 
These types can be found from (1.6) and (1.7). 

The results presented in Table 1 contain the initial information on the number of different submodels 
of each type. Here it is taken into account that submodels are determined not only by their type, but 

Table 1 

o 8 i N N=~ Remarks 

3 0 8 13(I) 13(I) 
2 0 7 26 (2) 26 (2) 
3 I 26 (2) I (2) 
I 0 38 (3) 38 (3) 
2 I 6 51 (3) 12 (3) 
3 2 47 (3) - 
0 0 5 (4) 5 (4) 

I 1 5 46 (4) + l (5) 29 (4) 
2 2 47 (4)+ ] (5) I (4) 
3 3 47 (4) + 2 (5) - 
0 1 22 (5) + 2 (6) 22 (5) 
i 2 4 35 (5) + 13 (6) 9 (5) + ! (6) 
2 3 35 (5) + 8 (6) - 
3 4 35 (5) + 8 (6) - 
0 2 13(6)+10(7)  13(6)+10(7)  
1 3 3 1 (6) + 8 (7) I (7) 
2 4 I (6) + 5 (7) - 
0 3 2 I C£7) I C~7) 
i 4 I (7) - 

0 4 I 

invariant 
invariant 

invariant 

invariant 

isobaric 

pa~if l  ~obafic 

partial isobaric 
barochronic 

isobaric 
isentropic and 

barotropic 

none 
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that they also depend on a specific representation of the Lie algebra Ln  in terms of the operators (2.2) 
in R 9. For example, from (2.2) one can see immediately that p, S, andp are invariants of any subgroup 
in GlI. 

The type (o, 5) is shown in the first two columns of Table 1. In the third column we list possible 
dimensions I of the space of invariants. The fourth column provides information on the number N of 
subalgebras from the optimal system OLn which can generate different models. Here N is represented 
as a sum Nl(rl) + Nz(r2), where rk is the dimensions of a subalgebra, and Nk(rk) is the number of 
subalgebras of dimension r k. In the fifth column, using the same notation, we give the number Nres of 
subalgebras generating different regu/ar submodels. That no submodel of the given type exists is indicated 
by a dash. The sixth column lists specified classes of solutions. 

Among the gas motions described by (2.1) one can distinguish the classes of motions mentioned below, 
which are frequently encountered in the classification of submodels. 

Type (1.4). Isentropic motions, S = const. System (2.1) reduces to 

pDu+F'(p)Vp=0,  Dp+pdivu=0 ,  p=F(p )  (3.1) 

with given function F(p). 
Type (1.4). Barotropic motions, p = P(p). Such a motion is either isentropic when P(p) = F(p), or 

has variable entropy. In the latter case (2.1) can be reduced to 

Du+Ve=0 ,  divu=0,  De=O (3.2) 

with specific enthalpy e = e(p), in terms of which the pressure can be expressed by the formula p = 
J" pe(p)dp. 

Type (1.3). Barochronic motions,p =p(t), p = p(t). Such motions are isentropic. System (2.1) reduces 
to 

Du=0,  d i v u = - p ' / p ,  p(t)=F(p(t)) (3.3) 

with given function F(p). 
Type (0.3). Isobaric motions, p = const. System (2.1) can be reduced to the following 

Du=0,  divu=0,  Dp=0,  F(p,S)=const (3.4) 

with given function F(O, S), which determines p(S). 
The systems of equations (3.2)-(3.4) are overdetermined. For (3.4) an expression for the general 

solution in terms of arbitrary functions is known [4]. System (3.3) can easily be reduced to involution, 
but no general solution has been constructed. Also, the problem of reducing (3.2) to involution remains 
unsolved. 

The fact that p and S are invariants of any subalgebra in OLn has a considerable effect on the structure 
of a submodel. In particular, submodels of type (0.4) are impossible, since the rank 6 = 0 means that 
one must put p = const and S = const, and 5 = 4 means that there must be 4 SF's, while only three, 
namely, u, v and w remain to be found. For the same reason, all submodels of type (0, 5) describe isobaric 
motions. All solutions of type (0.0) (including the constant solution) are contained in the dass of solutions 
of type (1.0) generated by the subalgebra L3,33 with basis X2, X3, )(10 and having the form 

u=O, u =u(x), w=w(x),  p=p(x), p=const 

All invariant submodels (of type 6, 0) are described separately and are not presented here (type (3.0) 
was published in [1]). Thus, below we describe only naturally possible regular submodels of type (3.1) 
and (2.2), and series of regular submodels of type (2.1), (1.1) and (1.2). One model of type (1.2) is 
distinguished. It can be called canonical, since it also arises in a number of other submodels. 

In what follows we shall write briefly (u, v,.. .)l(t,  x , . . . )  to show that u, v . . . .  depend on t, x , . . . .  

4. CANONICAL SUBMODEL OF TYPE (1.2) 

It describes a two-dimensional version of barochronic motions and is generated by the subalgebras 
L5,17 , L5,37 , L6~. They have the same system of invariants: t, u, p, S with SFs u, w. The solutions can be 
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represented as 

(u,p,S)lt;  ( v , w ) l ( t , x , y , z )  

From (3.3) it follows that u'(t)  = 0, i.e. u = const. By a Galilean translation in x one can ensure that 
u = 0 and then Eqs (3.3) reduce to 

UtWUIIy'I'wU z =0,  Wt'~t'UWy4"WW z = 0  (4.1) 

o y + w z = 2h (4.2) 

h = h(t)  being a function to be determined, in terms of which p = p(t) can be found from the equation 
p' = -2hp.  

The consistency conditions for system (4.1), (4.2) have the form 

v rwz - v  zWy = k (4.3) 

k = h ' + 2 h  2, k ' + 2 h k = O  (4.4) 

By these conditions the whole system (4.1)-(4.4) is in involution. This system is interesting in that its 
general solution can be found in terms of arbitrary functions. 

By means of the substitution 

z = Z( t , y , v  ), w = W( t , y , v  ) (4.5) 

the system can be linearized, taking the form 

W v = Zy ae 2 h Z  9 , W v = - k ~  (4 .6 )  

W t +vWy = O, Z t +vZ r = W (4.7) 

Subsystem (4.6) can be integrated as a system of equations with constant coefficients. The form of the 
solution depends on the discriminant d = h 2 - k: system (4.6) is hyperbolic when d > 0, elliptic when 
d < 0, and parabolic when d = 0. The functions h(t) and k(t)  are easily found from the solution of (4.4) 
and turn out to be rational functions of t. Subsystem (4.7) reduces to a system of ordinary differential 
equations and can also be integrated explicitly. Finally, the solution can be determined implicitly from 
(4.5) with the known functions Z and W. 

5. R E G U L A R  S U B M O D E L  OF TYPE (3.1) 

It is generated by the subalgebra L2,26 with basis X1, 2(4, t ,y ,  z, v, w, p, S are invariants and u is an SE 
The solution can be represented as 

u = u( t , x , y , z ) ;  (u ,w ,p ,S ) l ( t , y , z )  

System (2.1) takes the form 

D ' u + u u  x =0, pD'u  +py =0,  p D ' w + p z  = 0  (5.1) 

D ' p + p ( u x  +vy  + w z ) = O ,  D 'S=O,  p =  F(p ,S)  

where D" = Ot + roy + wO z. 
To reduce (5.1) to involution it suffices to observe that, by the fourth equation, ux is a function of t, 

y and z only. Thus, fi)r the SF u one can take the representation 

u = (x + X) / h (5.2) 

with some functions X = X(t ,  y,  z )  and h = h(t, y, z). On substituting (5.2), system (5.1) becomes 
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pD'u+py=O, pD'w+pz=O, D 'p+p(vy+wz)=-p /h  (5.3) 

D'S=O, D'X=O, D'h=l 

which is a system in involution. It can be treated as a submodel of two-dimensional gas motions with 
a mass source (the first term in the third equation), which depends on the solution. 

If the density and pressure are modified so that p* = hp, p* = hp, from (5.3) we formally obtain a 
submodel of two-dimensional gas motions without a source, but with the "equation of state" depending 
on h: p* = hF(p*/h, S). 

6. R E G U L A R  S U B M O D E L  OF T Y P E  (2.2)  

It is generated by the subalgebras L4,47 and L5,14 having the same invariants t, x, v, p, S and SFs u, w. 
The solution can be represented as 

(u,p,S)l(t,x); (u,w)l(t,x,y,z) 

With the auxiliary invariant function h = h(t, x), system (2.1) splits into the invariant subsystem 

p(u t + ua x) + px = O, Pt + uPx + Pux + 2ph = 0 

s, + uS~ = o, j, = F(p,S) 

(6.1) 

and the overdetermined subsystem for the SFs v, w 

ut+UOx+OOy+Wll z =0, wt+uwx+llWy+WW z = 0  

Oy+w z =2h 

(6.2) 

Here the consistency conditions are 

v yw z -U zWy = k(t,x) 

hr +uhx + 2h2 =k, kt +ukx + 2hk=O 

(6.3) 

System (6.1)--(6.3) is in involution. One can see that subsystem (6.2), (6.3) is similar to the canonical 
system (4.1)-(4.4) and is identical with it exactly on introducing the Lagrangian coordinate ~ = ~(t, x) 
as a solution of the equation ~ + u ~  = 0 and substituting (t, x) ---) (t, ~). Thus, subsystem (6.2), (6.3) 
can be integrated explicitly and only subsystem (6.1) remains. It describes the one-dimensional motion 
of a gas with a mass source 2ph. 

The function ~(t, x) can be chosen in such a way that the expressions 

p : k ~ ,  p u : - k ~ ,  (6.4) 

hold, which integrate the second equation in (6.1) exactly. Since S = S(~) here, for ~(t,x) one can obtain 
one second-order quasilinear equation with known coefficients (by analogy with the case of steady one- 
dimensional gas motions). 

7. R E G U L A R  S U B M O D E L S  OF T Y P E  (2.1)  

According to Table 1, there are 12 such models altogether and all of them are generated by some 
three-dimensional subalgebras L3; from the optimal system OLll [1]. A detailed description of these 
submodels exists. Here  it is given in an abridged form in Table 2. 

In the first column in Table 2 we give the numbers i of the generating subalgebras/(3 i. In the second 
column we list the operator bases of L3~ using the notation of (2.2), each operatorXk being represented 
only by its number k. The symbol ct7 + 11, where tz is any real number, denotes the operator (~t" 7 + 
Xll, and so on. In the next two columns we give the bases of invariants of the subalgebras L3J using the 

2 ~ • following standard notation: r = ~/(x 2 + y2 + z2), R = ~/(y + z2), 0 = arctg(z/y), V = v cos 0 + w sm 0, 
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i Basis L3~ lnvariants SF Char. class 

Independent Unknown 

6 !, 4, 0t7 + 11 R / t , O - o t l n t  V . W  u X s 

8 7,8,9 t , r  U , H  to ¢ 

X 
11 1,4,7 t ,R  V , W  u X 
13 2,3,7 t , x  u , q  q~ 

X 
15 o0 3 + 5, 2-6, 7 t, x u, V* O* 

X 
17 1,4,7+10 R , O - t  V , W  u X s 

23 I, 4, ct6 + 11 y / t , z / t - o t i n t  v , w - z / t  u Z s 

27o0 3,6,4+ 10 x _ 1 1 2 ,  Y u - t ,  v w X s 
2 

29 i, 4. 10 y , z  u, w u g s 

3Sl °o0 3, I +5,6 t, x - ylt u, v -  y/t w X• 

38~ ~° 3,5, 2+6 t, x u, w + tv - y v X• 

46 1,2,4 t . z  v, w u Xe 

I4" = -v sin 0 + w cos 0, q = ~/(1, '2 q- 14.'2), t,p --. arctg(w / v). Individual symbols are adopted for i = 8, 
where U and H are, respectively, the radial component and the component tangential to the spheres r 
= const of the velocity vector u, and co is the angle between the projection of  u onto the sphere and 

00 , the meridian. For i = 15 we introduce V* and 0 by 

t y  + z + tz  - y 
u - ~  V* cos0*, - ~ +  V* sin0* - t 2 + l  w - t 2 + l  

In all submodels p and S are also invariants, which are omitted for brevity. In the fifth column we 
list the SFs. The last column presents an additional qualitative feature of the submodel, namely, its 
c h a r a c t e r i s t i c  c l a s s  ~(,e or Z s. The class Z e contains submodels whose equations are analogous to those of 
o n e - d i m e n s i o n a l  u n s t e a d y  m o t i o n s  of hyperbolic type. The class Z s contains models whose equations are 
analogous to those of t w o - d i m e n s i o n a l  s t e a d y  f l o w s  of special elliptic-parabolic type. 

For all submodels in Table 2 we have established the existence of the corresponding partially 
invariant solutions. The submodel for i = 8 was studied in [5]. When the submodel for i = 15 °° was 
analysed, it turned out that reduction to an invariant solution occurs in it. All remaining submodels in 
Table 2 are irreducible. 

8. R E G U L A R  S U B M O D E L S  OF T Y P E  (1 .2)  

All but one of such submodels are generated by the five-dimensional subalgebras Ls, i. The submodel 
generated by the subalgebra Z6,10 with basis X1, X2, X3, XT, Xs, X9, invariants t, I u l, P, S, and SFs u, w 
is an exception. It describes special barochronic motions in which the modulus of  the velocity is constant 

U 2 +/3 2 + W 2 = a 2 (a = const) (8.1) 

Such solutions exist, but for the corresponding overdetermined system (3.3) supplemented with (8.1) 
the general solution has not been found in closed form. 

A list of  generating subalgebras Ls, i is given in Table 3, which is similar to Table 2. Here  an important 
d o u b l i n g  e f f e c t  is taken into account: different subalgebras generate the same submodel. Such subalgebras 
have the same universal invariants, which is possible because of  the special form of the representation 
of the Lie algebra L u by the operators (2.2). The doubling effect is taken into account in Table 3 by 
specifying all values of  i that determine a given submodel along with the six-dimensional subalgebras 
(the last column) generating the same submodel. 

The submodel for i = 17 has already been referred to in Section 4 as the canonical submodel. It has 
been established that in each submodel (i = 10, 13, 18, 19) there is a subsystem of equations equivalent 
to the canonical sub~ystem of type (1.2). 
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Table 3 

i Basis L3~ Invariants SF Doublets 

Independent Unknown r = 5 r = 6 

7 1, 5, 6,ot4 + 7, RIt u-tz(p-[~int q,c# 
I]4+!I 

10 2, 3, 5, 6, x l t  - (Not) In t u - x l t  v ,  w 26 60 
[14+7 +otll 

13 2,3,5,6 t u-xl t  o,w 35 15 
~ + 7  

15 1,2,3.4,7 t q u,~o 
16 1,4,3+5, t V* u,0* 

2-6,7 
17 2,3 ,5 ,6 ,  t u o , w  37 800 

1+7 
18 2, 3,5,6, x _ l t 2  u - t  o,w 31 1200 

154 +7 + 1310 2 
19 2, 3, 5, 6, x u v, w 33 13 

7+ 10 
36 2,3,4,5, t w-tu-x u,u 

I+6 

9. R E G U L A R  S U B M O D E L S  OF T Y P E  (1 .1)  

All 29 submodels of this type are generated by the four-dimensional subalgebras L4~. A brief 
description of them is presented in Table 4, constructed in the same way and using the same notation 
as Tables 2 and 3. Additionally, the invariants q*, 9", Jb J2 appearing here are given by 

o = y / t + q * c o s ( p * ,  w = z l t + q  smq) 

j~ = ( t ~ - ~fJ )o + ( o t  - fJx )u  - t y  + [~z 

j~ = 0 2 - a ~ ) w  + ('ct - a o ) u  - a y  + tz 

For all submodels in Table 4 the corresponding H(1, 1)-solutions exist. The submodels in which t is 
an independent variable give rise to partial barochronic motions of a gas. 

10. C O N C L U D I N G  R E M A R K S  

As a result of this study we have obtained a complete list of 100 regular partially invariant submodels 
of  the equations of gas dynamics (2.1) with an equation of state of the gas of the general fo rmp = F(p, 
S). Their  significance for gas dynamics is determined in the first place by the fact that they describe 
exact solutions of  (2.1). Many of the submodels listed above are physically relevant because problems 
with special initial data can be posed for them. 

For example, the submodel generated by the subalgebra L4,48 ill Table 4, which describes a special case of 
barochronic motions of a gas yields solutions of the form 

u=0, o = z - t w ,  w=w(t ,x ,y ,z ) ,  pffip(t), $ffieonst 

where the given functions satisfy the system of equations 

w t+owy+ww z=O, w z - t w y = h  

p" l p = - h  

h '+h2=2k ,  k '+hk=O, p=F(p)  

in which h = h(t), k = k(t) and a prime denotes the derivative with respect to t. 
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Basis Ls~ Invariants 

Independent Unknown 

SF 

1 7 ,8 ,9 ,11  lit 
4 1,4, 10,7 + o~11 Re -ae 

• 5 ° 5.6, 7, [34+ 11 x l t - ~ l n t  

6 1 .4 ,7 .11 R/t 
70 2. 3,-7, []4 + I1 x l t - ~ l n t  

90 i , 5 , 6 , [ M + 7  t 

10 ° 2 , 3 , 4 , 7  t 

12 1,2, 3,~54 + 7 t 
13 7, 8, 9, 10 r 
14 2 ,3 ,7 ,  10 x 

160 2.3, 7 .4  + 10 x - l t 2  

17 4 , 5 , 6 , 7  t 

18 4 ,5 ,6 ,  1 + 7  t 

19 4, 3 + 5 .2-6,  txl + 7 t 

20 1, 3 + 5 ,2 -6 ,0A + 7 t 

21 2 , 3 , 4 , 1 + 7  t 
23 1,4, 10, 11 z/y 
29 1,4.6,  o.5 + 11 y l t - c t l n t  
300 2 , 3 , 6 . [ 3 4 + o 5 + 1 1  x l t - ~ l n t  

350 2, 3.5, 4 + []6 + I0 x - l t 2  
2 

360 2 . 3 , 5 , 6 +  10 x 

38 2 ,3 ,5 ,  10 x 
41 1,024, '1:3+4, t 

et3 + 5,[~2 + 6  
42 1 . 4 , 3 + 5 , 2 - 6  t 

43 1 ,4 ,5 ,6  t 
44 2,¢zl + 3, 1 + 5 , 6  t 
46 2,txl + 3 , 5 , 6  t 
48 1 . 2 , 3 + 5 , 6  t 
50 1.2. 3, 4 t 

U,H 
q , ~ - O  

u - x l t ,  q* 
q,t#-O 

u - x l t . q  

u - [Jcp* ,q*  

u - x l t ,  q 
u - [kp ,  q 

U,H 
u, q 

u - t , q  

u - x I t , q *  

u+(cO*-x) /  t,q* 

u+(aO" - x ) l  t, V" 

u - aO*, V* 
u + ( q ~ - x ) / t , q  

U, W 

v - y / t ,  w - z l t  
u - x / t ,  v - f l i n t  

u, w - t  

Jl, J2 

V °, 0 ° 
v - y / t ,  w - z l t  
u ,u - ff.tw - x + o.z 
u , w + ( x - f f . z ) l c f f  

u,~ + t w -  z 
U, w 

¢t) 
u 

u 
q~ 

~0 

~0 
to 

0 ° 
0 ° 

u 

w 

I/ 

IJ 

u 

u 

u 

w 
u 

w 
u 

The solution of this system is uniquely defined by the initial data for t = 0 

u=O, u=z,  w=-toY+hoz+W(x ) 

P=Po,  h = h o ,  k = k o  

where P0,/co, h0 are arbitrary constants and W(x) is an arbitrary function. The solution can be found explicitly and 
contains an arbitrat 3, function of  one argument. It describes the motion of  a gas as a type of wave propagating 
over an expanding spatial background. 

For special equatkms of state (a polytropic gas, etc.) such a list will be, in general, larger in accordance with the 
classification of"large" models of  gas dynamics [1]. 

There are also many irregular models for system (2.1), but they remain to be investigated in the future. Such 
submodels exist, as z~ rule, only for special equations of state. The problems of their existence is related to non- 
trivial issues on reducing overdetermined systems to involution. One can get some idea of the difficulties arising 
in this case from [6, 7], where (among other things) the problem is discussed for partially invariant submodels of 
type (2.2) and (3.3) generated by the subalgebra L4,40 with basis X1, X2, ?(3, XI~ 
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